Marshfield CE VC Primary School # Learning together, inspiring each other, achieving our best # **Division** # National Curriculum Objectives by Year Group | Year Group | Multiplication Multiplication | |------------|--| | EYFS | ELG: solve problems, including doubling, halving and sharing. | | | • Exceeding: solve practical problems that involve combining groups of 2, 5 or 10, or sharing into equal groups | | Year 1 | Solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. | | Year 2 | Recall and use division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers Calculate mathematical statements for division within the multiplication tables and write them using the division (÷) and equals (=) signs Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Solve problems involving division, using materials, arrays, repeated addition, mental methods, and division facts, including problems in contexts. | | Year 3 | Recall and use division facts for the 3, 4 and 8 multiplication tables Write and calculate mathematical statements for division using the multiplication tables that they know, using mental and progressing to formal written methods Solve problems, including missing number problems, involving division. | | Year 4 | Recall division facts for multiplication tables up to 12 x 12 Use place value, known and derived facts to divide mentally, including dividing by 1 Recognise and use factor pairs and commutativity in mental calculations | | Year 5 | Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers Establish whether a number up to 100 is prime and recall prime numbers up to 19 Divide numbers mentally drawing upon known facts Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context Divide whole numbers and those involving decimals by 10, 100 and 1000 Solve problems involving division including using their knowledge of factors and multiples, squares and cubes Solve problems involving division and a combination of these, including understanding the meaning of the equals sign Solve problems involving division, including scaling by simple fractions and problems involving simple rates. | | Year 6 | Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context | - Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context - Perform mental calculations, including with mixed operations and large numbers - Identify common factors, common multiples and prime numbers - Use their knowledge of the order of operations to carry out calculations involving the four operations - Solve problems involving division - Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. | <u>Year</u>
<u>Group</u> | Possible Concrete and Visu | al Representations | Children's Recording | <u>Vocabulary</u> | |-----------------------------|--|--------------------|---|---| | EYFS | Sharing objects: 10 ÷ 2 = 5 Halving: | | Share 9 buns between three people. $9 \div 3 = 3$ Bar models: $6 + 2 = 3$ 3 | half of halving share between sharing equal groups sets count in twos, fives and tens (Exceeding) | Year 1 Division as grouping: 10 ÷ 5 Divide quantities into equal groups: Record as number sentences using ÷ and = $$8 \div 4 = 2$$ "Eight divided into four equal groups = two in each group" share into division dividing grouping count back unequal equal ### Year 2 Arrays: $12 \div 3 = 4 \text{ or } 12 \div 4 = 3$ Repeated subtraction (using Cuisenaire rods above a ruler) Bar modelling: Repeated subtraction: Record calculations using \div and = symbols. array row column fact family inverse divide, divided by, divided into left, left over repeated subtraction ### Year 3 # Partitioning to divide 2-digit numbers: 84 ÷ 2 = Place value grids and part-whole models: | Tens | Ones | |-------|------| | 100 | 1 1 | | · · · | 1 | | 100 | | Partitioning in different ways to divide numbers: Division with remainders: How many squares can we make from 13 matchsticks? Dividing with remainders: Written method (after partitioning): $$42 = 30 + 12$$ $$30 \div 3 = 10$$ $$12 \div 3 = 4$$ $$10 + 4 = 14$$ Division with remainders: $$29 \div 8 = 3r5$$ missing number times table remainder partition fact family inverse operation empty box ### Year 5 Short division: Place value counters: 4892 ÷ 4 | Thousands | Hundreds | Tens | Ones | |-----------|----------|------|------| | | 100 000 | | 00 | Short division with remainders: | Thousands | Hundreds | Tens | Ones | |-----------|----------|------|------| | | | | | Short division: | | 1 | 2 | 2 | 3 | |---|---|---|---|----| | 4 | 4 | 8 | 9 | 12 | With remainders: | | 1 | 2 | 2 | 3 | r2 | | |---|---|---|---|----|----|--| | 4 | 4 | 8 | 9 | 14 | | | | | | | | | | | With remainder as a fraction With remainder as a decimal compact short scale down test of divisibility # Year 6 Dividing decimals by powers of 10: Thousands Hundreds Tens Ones Ten Physically move counters to right on place value grid. ### Long division: | 1000s | 100s | 10s | 1s
0000 | |-------|------|------|------------| | 1000s | 100s | 10s | 1s | | | 0000 | 0000 | 0000 | We can't group 2 thousands into groups of 12 so will exchange them. Hundredth We can group 24 hundreds into groups of 12 which leaves with 1 hundred. | 1000s | 100s | 10s | 1s | |-------|------|--------------------|------| | | 0000 | 0000
0000
00 | 0000 | After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens. | 100s | 10s | 1s | |------|--|--------------------------------------| | 0000 | 0000 | 9000
9000
9000
9000
9000 | | | 100s
00000
00000
00000
00000 | 100s 10s | After exchanging the 2 tens, we 12 2544 have 24 ones. We can group 24 ones 24 into 2 group of 12, which leaves no remainder. 14 12 24 24 ## Long division: | | | | | | | Multiples of 12: | $12 \times 1 = 12$ | |---|-----|-----|---|---|---|------------------|--| | 1 | | | 0 | 3 | 6 | | $12 \times 2 = 24$ | | | 1 | 2 | 4 | 3 | 2 | (70) | $12 \times 3 = 36$ | | | 783 | ==0 | 7 | - | 0 | (×30) | $12 \times 4 = 48$ | | - | | | 3 | 6 | 0 | | $12 \times 5 = 60$ | | | | | | 7 | 2 | (×6) | $12 \times 6 = 72$
$12 \times 7 = 84$ | | | | | | 7 | 2 | (x0) | $12 \times 7 = 84$
$12 \times 8 = 96$ | | | | | | | 0 | | $12 \times 7 = 108$ | | | | _ | _ | _ | | 1 | $12 \times 10 = 120$ | | | | | | | | | | brackets balance order of operations precedence Short division with 2-digit divisors: | | | 0 | 2 | 4 | 15 | 1 | |---|---|---|-----|----|----|----| | 3 | 2 | 7 | 781 | 43 | 1 | 32 | | | | | | | | |